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DETECTING MULTI-OBJECT ANOMALIES
UTILIZING A LOW RANK SPARSITY MODEL

CROSS-REFERENCE TO PROVISIONAL
APPLICATION

This application claims priority under 35 U.S.C. 119(e) to
U.S. Provisional Patent Application Ser. No. 61/892,149,
entitled “Low Rank Sparsity Prior for Video Anomaly Detec-
tion,” which was filed on Oct. 17, 2013, the disclosure of
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

Embodiments are generally related to the management of
traffic systems. Embodiments are also related to video-based
surveillance. Embodiments are additionally related to the
detection of anomalies at traffic intersections for use in man-
aging traffic. Embodiments are further related to low-rank
approximation techniques.

BACKGROUND

With the increased demand for security and safety, video-
based surveillance systems are being employed in a variety of
rural and urban locations. A vast amount of video footage, for
example, can be collected and analyzed for traffic violations,
accidents, crime, terrorism, vandalism, and other suspicious
activities. Because manual analysis of such large volumes of
data is prohibitively costly, a pressing need exists for devel-
oping effective software tools that can aid in the automatic or
semi-automatic interpretation and analysis of video data for
surveillance, law enforcement, and traffic control and man-
agement.

Video-based anomaly detection refers to the problem of
identifying patterns in data that do not conform to expected
behavior, and which may warrant special attention or action.
The detection of anomalies in a transportation domain can
include, for example, traffic violations, unsafe driver/pedes-
trian behavior, accidents, etc. FIGS. 1-2 illustrate pictorial
views of exemplary transportation related anomalies captured
from, for example, video monitoring cameras. In the scenario
depicted in FIG. 1, unattended baggage 100 is shown and
identified by a circle. In the example shown in FIG. 2, a
vehicle is depicted approaching a pedestrian 130. Both the
vehicle and pedestrian 130 are shown surrounded by a circle.

A number of anomalies can be generated by a typical
trajectory/behavior of a single object and collective anoma-
lies can be caused by joint observation of the objects. For
example, in the area of transportation, accidents at traffic
intersections are indeed based on joint and not just individual
object behavior. Also, it is possible that the individual object
behaviors are not anomalous when studied in isolation, but in
combination produce an anomalous event. For example, a
vehicle that comes to a stop at a pedestrian crossing before
proceeding is a result of the car colliding with, or coming in
very close proximity with the crossing pedestrian.

Several approaches have been proposed to detect the traf-
fic-related anomalies based on an object tracking technique.
In one prior art approach, nominal vehicle paths or trajecto-
ries can be derived and deviations thereof can be searched in
a live traffic video data. The vehicle is tracked and its path is
compared against nominal classes during a test or evaluation
phase. A statistically significant deviation from all classes
indicates an anomalous path. A problem associated with such
approach is that an abnormal pattern in realistic scenarios
involving multiple object trajectories in the presence of
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occlusions, clutter, and other background noise are not
detected. Also, the algorithms are not computationally simple
enough to detect the anomalies in quasi-real-time.

Another approach involves the use of a sparse reconstruc-
tion model to solve the classification problem and subse-
quently for anomaly detection. For example, a normal and/or
usual event in a video footage can be extracted and catego-
rized into a set of nominal event classes in a training step. The
categorization is based on a set of n-dimensional feature
vectors extracted from the video data and can be performed
manually or automatically. The parametric representations of
vehicle trajectories can be chosen as features and any new
nominal sample can be explained by a linear combination of
samples within one of the nominal classes.

The training samples from the i-th class can be arranged as
columns of a matrix A,eR 7. A dictionary AeR "**7 with
respect to the training samples from all K classes can then be
formed as follows: A=[A, A2, ..., Az]. A test image yeR”
from a similar class is conjectured to approximately lie in a
linear span of those training samples for given sufficient
training samples from the m-th trajectory class. Any input
trajectory feature vector may hence be represented by a sparse
linear combination of the set of all training trajectory samples
as shown below in equation (1):

®

ay
@2
y=Aa=[Ay1, A2, ..., Akl

274

where each o,€R 7. Typically for a given trajectory y, only
one of the a,’s is active (corresponding to the class/event that
y is generated from), thus the coefficient vector ceR %7 is
modeled as being sparse and is recovered by solving the
following optimization problem:

@

>
1}

gmin .
ledl; subject to ||y — Aall, <&
@

where the objective is to minimize the number of non-zero
elements in a. It is well-known from the compressed sensing
literature that utilizing the I, norm leads to a NP-hard (non-
deterministic polynomial-time hard) problem. Thus, the I,
norm can be employed as an effective approximation. A
residual error between the test trajectory and each class
behavior pattern can be computed as shown in equation (3) to
determine a class to which the test trajectory belongs:

HElp-40),i=12, .. K ©)

If anomalies have been predefined into their own class,
then the classification task also accomplishes anomaly detec-
tion. Alternatively, if all training classes correspond to only
normal events, then anomalies can be identified via outlier

detection. To this end, an index of sparsity can be defined and
utilized to measure the sparsity of the reconstructed a:

K -max; [16; @)l /lledl; =1
K-1

SCl(@) = @

[0, 1]

where 8,(c):R “—R 7 the characteristic function that selects
the coefficients a, with respect to the i-th class. The normal
samples are likely to exhibit a high level of sparsity, and
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conversely, anomalous samples likely produce a low sparsity
index. A threshold on SCI(a) determines whether or not the
sample is anomalous. Such sparsity based framework for
classification and anomaly detection is robust against various
distortions, notably occlusion and is robust with respect to the
particular features chosen, provided the sparse representation
is computed correctly.

However, such an approach does not take into account joint
anomalies involving multiple objects and does not capture the
interactions required to detect these types of multi-object
anomalies. To address this issue, a joint sparsity model can be
employed to detect anomalies involving co-occurrence of two
or more events. The joint sparsity model solves for the sparse
coefficients via the optimization problem. An example of the
optimization problem and the joint sparsity model is dis-
cussed in U.S. patent application Ser. No. 13/476,239,
entitled “Method and System for Automatically Detecting
Multi-Object Anomalies Utilizing Joint Sparse Reconstruc-
tion Model,” which is is incorporated herein by reference in
its entirety. The optimization problem can be expressed as, for
example:

minimize [V(HoS)||, 4,0

subject to || Y-43||z<e 5)

This anomaly detection technique based on the sparsity
model is particularly robust against various distortions, nota-
bly occlusion, and identifies anomalies with high accuracy
rates. The model, however, relies upon a certain structure
wherein there exists a rigid object correspondence between
the training dictionary A and the test trajectories Y. Further-
more, one needs to know whether a given anomaly involves a
single object or P>1 objects. In the case of the latter, it is
necessary to know how many objects are involved in an event
(i.e., what is P) in order to trigger the appropriate training
dictionary, constructed separately for each value of P.

In real world scenarios, events are sometimes difficult to be
grouped into either single- or multi-object events even as
trajectory data corresponding to each object (whether
observed independently or jointly at the same time instant)
becomes available in real time. This is feasible in a structured
scenario such as a stop sign or a traffic intersection, where
events commonly involve a certain number of objects. How-
ever, the approach becomes unrealistic in more general trans-
portation scenarios (e.g., a busy airport or parking lot) where
object motion is unrestricted and does not exhibit repeated
patterns making it difficult to form associations of objects in
training videos to those in the test videos. Furthermore, equa-
tion (2) and its extension for multi-object anomaly detection
are expensive from the viewpoint of computation and par-
tially stems from the fact that they correspond to a non-
convex optimization problem.

FIG. 3 represents an example wherein the joint sparsity
model may fail if the order of test trajectories is different from
that of the training trajectories. Another example of a video
frame with crowded unstructured traffic patterns is shown in
FIG. 4. It is not known if the trajectory of the pedestrian
should be analyzed as a single event or joint event. In sum-
mary, previous formulations of the sparsity model and the
joint sparsity model are suitable for solving only the struc-
tured scenario where it is feasible to readily determine the
number and sequence of objects involved in the events.

Based on the foregoing, it is believed that a need exists for
an improved method and system for detecting single- and
multi-object anomalies in an unstructured scenario where the
number and sequence of objects in an event are not known or

10

15

20

25

30

35

40

45

50

55

60

65

4

easily obtainable. The proposed method and system is based
on a low rank sparsity prior model, as will be described in
greater detailed herein.

SUMMARY

The following summary is provided to facilitate an under-
standing of some of the innovative features unique to the
disclosed embodiments and is not intended to be a full
description. A full appreciation of the various aspects of the
embodiments disclosed herein can be gained by taking the
entire specification, claims, drawings, and abstract as a
whole.

Itis, therefore, one aspect of the disclosed embodiments to
provide methods and systems for detecting anomalies in
transportation related video footage.

It is another aspect of the disclosed embodiments to pro-
vide for improved video surveillance for use in traffic man-
agement.

The aforementioned aspects and other objectives and
advantages can now be achieved as described herein. Meth-
ods and systems for detecting anomalies in transportation
related video footage are disclosed. In an offline training
phase, receiving video footage of a traffic location can be
received. Also, in an offline training phase, event encodings
can be extracted from the video footage and collected or
compiled into a training dictionary. One or more input video
sequences captured at the traffic location or a similar traffic
location can be received in an online detection phase. Then,
an event encoding corresponding to the input video sequence
can be extracted. The event encoding can be reconstructed
with a low rank sparsity prior model applied with respect to
the training dictionary. The reconstruction error between
actual and reconstructed event encodings can then be com-
puted in order to determine if an event thereof is anomalous
by comparing the reconstruction error with a threshold.

BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures, in which like reference numer-
als refer to identical or functionally-similar elements
throughout the separate views and which are incorporated in
and form a part of the specification, further illustrate the
present invention and, together with the detailed description
of'the invention, serve to explain the principles of the present
invention.

FIGS. 1-2 illustrate an exemplary view of transportation
related anomalies;

FIG. 3 illustrates an example wherein the joint sparsity
model may fail if the order of test trajectories is different from
that of the training trajectories;

FIG. 4 illustrate a video frame with respect to a crowded
traffic;

FIG. 5illustrates a schematic view of a computer system, in
accordance with an embodiment;

FIG. 6 illustrates a schematic view of a software system
including a video-based multi-object anomalies detection
module, an operating system, and a user interface, in accor-
dance with an embodiment;

FIG. 7 illustrates a block diagram of a video-based
anomaly detection system based on a low rank sparsity prior
model, in accordance with a preferred embodiment;

FIG. 8 illustrates a high level flow chart of operations
illustrating logical operational steps of a method for detecting
single-object or multi-object anomalies utilizing the low rank
sparsity prior model, in accordance with an alternative
embodiment; and
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FIG. 9 illustrates a graph depicting a detection rate curve,
in accordance with the disclosed embodiments.

DETAILED DESCRIPTION

The particular values and configurations discussed in these
non-limiting examples can be varied and are cited merely to
illustrate at least one embodiment and are not intended to
limit the scope thereof.

The embodiments will now be described more fully here-
inafter with reference to the accompanying drawings, in
which illustrative embodiments of the invention are shown.
The embodiments disclosed herein can be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein; rather, these embodiments are
provided so that this disclosure will be thorough and com-
plete, and will fully convey the scope of the invention to those
skilled in the art. Like numbers refer to like elements through-
out. As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”,“an”, and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

As will be appreciated by one skilled in the art, the present
invention can be embodied as a method, data processing
system, or computer program product. Accordingly, the
present invention may take the form of an entire hardware
embodiment, an entire software embodiment or an embodi-
ment combining software and hardware aspects all generally
referred to herein as a “circuit” or “module.” Furthermore, the
present invention may take the form of a computer program
product on a computer-usable storage medium having com-
puter-usable program code embodied in the medium. Any
suitable computer readable medium may be utilized includ-
ing hard disks, USB Flash Drives, DVDs, CD-ROMs, optical
storage devices, magnetic storage devices, etc.

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro-
gramming language (e.g., Java, C++, etc.). The computer
program code, however, for carrying out operations of the
present invention may also be written in conventional proce-
dural programming languages, such as the “C” programming
language or in a visually oriented programming environment,
such as, for example, Visual Basic.

The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer. In the latter
scenario, the remote computer may be connected to a user’s
computer through a local area network (LAN) or a wide area
network (WAN), wireless data network e.g., WiFi, Wimax,
802.xx, and cellular network or the connection may be made
to an external computer via most third party supported net-
works (for example, through the Internet utilizing an Internet
Service Provider).

The embodiments are described at least in part herein with
reference to flowchart illustrations and/or block diagrams of
methods, systems, and computer program products and data
structures according to embodiments of the invention. It will
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be understood that each block of the illustrations, and com-
binations of blocks, can be implemented by computer pro-
gram instructions. These computer program instructions may
be provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the block or
blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the block or blocks.

FIGS. 5-6 are provided as exemplary diagrams of data-
processing environments in which embodiments of the
present invention may be implemented. It should be appreci-
ated that FIGS. 5-6 are only exemplary and are not intended to
assert or imply any limitation with regard to the environments
in which aspects or embodiments of the disclosed embodi-
ments may be implemented. Many modifications to the
depicted environments may be made without departing from
the spirit and scope of the disclosed embodiments.

As illustrated in FIG. 5, the disclosed embodiments may be
implemented in the context of a data-processing system 200
that includes, for example, a central processor 201, a main
memory 202, an input/output controller 203, a keyboard 204,
an input device 205 (e.g., a pointing device, such as a mouse,
track ball, and pen device, etc.), a display device 206, a mass
storage 207 (e.g., a hard disk), an image capturing unit 208,
and a USB (Universal Serial Bus) peripheral connection. As
illustrated, the various components of data-processing sys-
tem 200 can communicate electronically through a system
bus 210 or similar architecture. The system bus 210 may be,
for example, a subsystem that transfers data between, for
example, computer components within data-processing sys-
tem 200 or to and from other data-processing devices, com-
ponents, computers, etc.

FIG. 6 illustrates a computer software system 250 for
directing the operation of the data-processing system 200
depicted in FIG. 5. Software application 254, stored in main
memory 202 and on mass storage 207, generally includes a
kernel or operating system 251 and a shell or interface 253.
One or more application programs, such as software applica-
tion 254, may be “loaded” (i.e., transferred from mass storage
207 into the main memory 202) for execution by the data-
processing system 200. The data-processing system 200
receives user commands and data through user interface 253;
these inputs may then be acted upon by the data-processing
system 200 in accordance with instructions from operating
system 251 and/or software application 254.

The following discussion is intended to provide a brief,
general description of suitable computing environments in
which the system and method may be implemented. Although
not required, the disclosed embodiments will be described in
the general context of computer-executable instructions, such
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as program modules, being executed by a single computer. In
most instances, a “module” constitutes a software applica-
tion.

Generally, program modules include, but are not limited to,
routines, subroutines, software applications, programs,
objects, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types and
instructions. Moreover, those skilled in the art will appreciate
that the disclosed method and system may be practiced with
other computer system configurations, such as, for example,
hand-held devices, multi-processor systems, data networks,
microprocessor-based or programmable consumer electron-
ics, networked PCs, minicomputers, mainframe computers,
servers, and the like.

Note that the term module as utilized herein may refer to a
collection of routines and data structures that perform a par-
ticular task or implements a particular abstract data type.
Modules may be composed of two parts: an interface, which
lists the constants, data types, variable, and routines that can
be accessed by other modules or routines, and an implemen-
tation, which is typically private (accessible only to that mod-
ule) and which includes source code that actually implements
the routines in the module. The term module may also simply
refer to an application, such as a computer program designed
to assist in the performance of a specific task, such as word
processing, accounting, inventory management, etc.

The interface 253, which is preferably a graphical user
interface (GUI), also serves to display results, whereupon the
user may supply additional inputs or terminate the session. In
an example embodiment, operating system 251 and interface
253 can be implemented in the context of a “Windows” sys-
tem. It can be appreciated, of course, that other types of
systems are possible. For example, rather than a traditional
“Windows” system, other operation systems such as, for
example, Linux may also be employed with respect to oper-
ating system 251 and interface 253. The software application
254 can include a video-based multi-object anomaly detec-
tion module 252 for detecting anomalies in transportation
video footage based on a low rank sparsity prior model 320.
Software application 254, on the other hand, can include
instructions such as the various operations described herein
with respect to the various components and modules
described herein, and, for example, the instructions or opera-
tions shown in blocks 410, 420, 432, 440, and 450 of method
400 depicted in FIG. 8.

FIGS. 5-6 are thus intended as examples and not as archi-
tectural limitations of disclosed embodiments. Additionally,
such embodiments are not limited to any particular applica-
tion or computing or data-processing environment. Instead,
those skilled in the art will appreciate that the disclosed
approach may be advantageously applied to a variety of sys-
tems and application software. Moreover, the disclosed
embodiments can be embodied on a variety of different com-
puting platforms, including Macintosh, UNIX, LINUX, and
the like.

FIG. 7 illustrates a block diagram of a video-based single-
object or multi-objects anomaly detection system 300 based
on the low rank sparsity prior model 320, in accordance with
apreferred embodiment. It can be appreciated that the events
discussed herein may be single-object or multi-object anoma-
lies. Note that in FIGS. 5-9, identical or similar parts or
elements are generally indicated by identical reference
numeral. The video-based anomaly detection system 300
shown in FIG. 7 can detect, for example, collective anomalies
302, which may be caused by the joint observation of objects
from a video footage to identify unsafe driver/pedestrian
behavior, accidents, traffic violations, suspicious activity, etc.
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Detection system 300 detects abnormal patterns 302 in sce-
narios wherein, for example, multiple vehicles potentially
move along complex trajectories and in the presence of clutter
and other background noise and occlusion.

The video-based anomaly detection system 300 can be
configured to include, for example, an image capturing unit
355 (e.g., video camera) for capturing an image (or images/
video) of a vehicle 304 in motion within an effective field of
view. The image capturing unit 355 can be operatively con-
nected to, for example, a video processing unit 310 via a
network 345. Note that the image capturing unit 355
described herein is analogous or similar to the image captur-
ing unit 208 of the data-processing system 200, depicted in
FIG. 5. In some embodiments, the image-capturing unit 355
can include built-in integrated functions such as image pro-
cessing, data formatting, and data compression functions.

Note that the network 345 may employ any network topol-
ogy, transmission medium, or network protocol. The network
345 may include connections such as wire, wireless commu-
nication links, or fiber optic cables. Network 345 can be, for
example, the Internet representing a worldwide collection of
networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite of protocols to
communicate with one another. At the heart of the Internet is
a backbone of high-speed data communication lines between
major nodes or host computers consisting of thousands of
commercial, government, educational, and other computer
systems that route data and messages.

The video-based anomaly detection system 300 can
include the video-based multi-object anomalies detection
module 252 for automatically detecting the multi-object
anomalies 302 at a traffic intersection. The video-based multi-
object anomalies detection module 252 further includes an
offline training unit 312 and an online detection unit 318
associated with the low rank sparsity prior model 320. It can
be appreciated that the offline training unit 312 and the online
detection unit 318 can be implemented as software modules.

The video-based anomaly detection module 252 is config-
ured to extract and collect a vehicle trajectory 316 corre-
sponding to a first video sequence at a first traffic event into a
training dictionary 314 suitable for the low rank sparsity prior
model 320 in the offline training unit 312. The video-based
multi-object anomalies detection module 252 further receives
a second input video sequence captured at a second traffic
event similar to the first traffic event in the online detection
phase 318. The module 252 extracts and reconstructs a tra-
jectory 322 utilizing the low rank sparsity prior model 320
applied with respect to the training dictionary 314. The low
rank sparsity prior model 320 simultaneously minimizes rank
and maximizes sparsity of a reconstruction coefficient matrix
326 by solving a constrained convex optimization problem.

The module 252 can compute a reconstruction error 324
between the actual and reconstructed vehicle trajectories 316
and 322 and the reconstruction error 324 can be compared
with a threshold to determine whether an event is anomalous
330. The system 300 imposes less restriction on the structure
of the training dictionary and run time execution is much
faster than that of the standard sparse reconstruction
approach.

FIG. 8 illustrates a high level flow chart of operations
illustrating logical operational steps of a method 400 for
detecting single-object or multi-object anomalies utilizing
the rank sparsity prior model 320, in accordance with an
alternative example embodiment. Initially, as indicated at
block 410, the vehicle trajectory 316 corresponding to the
first video sequence at the first traffic event can be extracted
and collected into the training dictionary 314 suitable for the
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low rank sparsity prior model 320 in the offline training phase
312. The second input video sequence captured at the second
traffic event similar to the first traffic event can be received in
the online detection phase 318, as illustrated at block 420.

The trajectory 322 can be extracted and reconstructed uti-
lizing the low rank sparsity model 320 applied with respect to
the training dictionary 314, as indicated at block 430. Note
that within block 430, a secondary operation is indicated at
block 432, which is a specific elaboration of the operation
depicted at 430. That is, the operation shown at block 432 may
form a part of the operation of block 430 or may be left out.
Thus, as shown at block 432, the low rank sparsity model can
be formulated in terms of a constrained convex optimization
problem solved to simultaneously minimize rank and maxi-
mize sparsity of the reconstruction coefficient matrix 326
utilizing the low rank sparsity prior model 320.

Thereafter, as indicated at block 440 and 450, steps or
logical operations can be implemented in which reconstruc-
tion error 324 between the actual and reconstructed vehicle
trajectories 316 and 322 is computed and the reconstruction
error 324 compared with the threshold to determine whether
an event is anomalous 330.

Specifically, anomaly detection can be accomplished by
collecting M input events within a certain time range into a
matrix Y={y,}eR ™. For example, events could be trajec-
tories of moving objects. The training dictionary AeR 7
includes events corresponding to single and multiple objects.
The order of the training samples can be arbitrary. For the
given event matrix Y, the coefficient matrix SeR “*is solved
for assuming the linear model Y=AS.

For normal events, Y is expected to be sparse given a
sufficient number of training samples. However, since the
structure of the dictionary, and hence the sparse structure of' S,
is not known ahead of time, the well-known I, norm, I, norm
OF |4,y 0 to measure and maximize the sparsity of s cannot be
employed. The key observation behind the invention is that a
sparse matrix will, with high probability, also exhibit low
rank. Therefore, rank can be utilized to measure sparsity, and
S could be obtained from the solution of:

minimize rank(S)

subject to |[Y-AS||z<e 6)

The term rank(S) can be intractable. Therefore, this prob-
lem can be relaxed into a convex problem by approximating
rank(S) to be ||S||.==,0,(S) (where ||, denotes nuclear norm
and o,(S) is the i-th singular value of (S). The optimization in
Equation (6) now becomes a convex problem:

minimize [|S||«

subject to [[Y-AS||z<e @)

However, low rank does not ensure sparsity, in fact:
s
sparse matriX « low rank matrix
The following two simple matrices illustrate this state-
ment:

o O = O
_ O O
o o O

01
ut not low rank

o O O -

Sparse

w
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-continued

1 1
1 1
1 1
1

— =

1
ut not sparse

[

Low rank

Therefore, in order to ensure sparsity in Equation (7), a I,
norm regularization term 330 can be added into the cost
function while still preserving convexity:

minimize ||S|l«+M|S|;

subject to || Y-4.5]|z<e (8)

Nuclear norm minimization subject to linear constraints is
a well-known problem; but, because of a quadratic constraint
|[Y-AS]||z<e, this problem requires a different solution. In the
preferred embodiment, a semi-definite programming meth-
odology is used to solve for Equation (8). Once the optimal
coefficient matrix S is known, the recovered trajectory can be
computed utilizing columns of S= (815 855+« -5 Spp)t

J7AS, ()]
Those test trajectories that are very similar to the recovered
trajectories can be regarded as normal events 328.

llyi = 3:ll, 10

[ly:lly

< 7 - y; is deemed normal

Remaining trajectories for which recovered trajectories are
very different from actual trajectories are regarded as anoma-
lous.

One important quantity in Equation (8) that must be deter-
mined is the regularization parameter A which can be
employed to determine the relative weight between ||*||, and
|l*ll; - This parameter can be determined by sweeping across a
range of A values and determining anomaly detection rates
using n-fold cross-validation techniques. The value of A is
picked that maximizes the detection rate.

FIG. 9 illustrates a graph 600 depicting anomaly detection
rates curves, in accordance with an embodiment. Graph 600
shown in FIG. 9 illustrates example detection rates curves
with respect to A for a set of experimental video events cap-
tured at a stop sign intersection. A value of A=0.75 is optimal
for this data set. Examples of normal detection rates are
indicated by a solid line in graph 600. Anomalous events are
indicated by dashed line of graph 600.

TABLE 1 shown below represents the execution time and
confusion matrices of low rank sparsity prior model 320 and
sparsity model for a set of experimental data. It can be
observed that the disclosed low rank sparsity prior model 320
runs much faster than the sparsity model with only a little loss
in detection rates.

TABLE 1
Low rank sparsity
prior Sparsity model
Running time
37 seconds 159 seconds
Normal Anomaly Normal Anomaly
Normal 88.2% 25.0% 91.2% 25.0%
Anomaly 11.8% 75.0% 8.8% 75.0%
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The low rank sparsity prior model 320 is more practical and
requires less effort in building the training dictionary. The low
rank sparsity prior model 320 also requires a lower compu-
tational complexity at run-time and imposes less restriction
on the structure of the training dictionary, thus making its
generation much more efficient and convenient. The results
indicate a significant gain in run time speed with modest loss
in detection accuracy. Embodiments are readily detected via
the significant performance speedup.

Based on the foregoing, it can be appreciated that a number
of embodiments, preferred and alternative, are disclosed
herein. For example, in one embodiment, a method can be
implemented for detecting anomalies in transportation
related video footage. Such a method can include the steps or
logical operations of, for example: in an offline training
phase, receiving video footage at a traffic location; in an
offline training phase, extracting event encodings from the
video footage and collecting the event encodings into a train-
ing dictionary; in an online detection phase, receiving at least
one input video sequence captured at the traffic location or a
similar traffic location; extracting an event encoding corre-
sponding to input video sequence; reconstructing the event
encoding with a low rank sparsity prior model applied with
respect to the training dictionary; and computing a recon-
struction error between actual and reconstructed event encod-
ings in order to determine if an event thereof is anomalous by
comparing the reconstruction error with a threshold.

In another embodiment, a system for detecting anomalies
in transportation related video footage can be implemented.
Such a system can include, for example, a processor and a
computer-usable medium embodying computer program
code, the computer-usable medium capable of communicat-
ing with the processor. The computer program code can
include instructions executable by the processor and config-
ured for: in an offline training phase, receiving video footage
at a traffic location; in an offline training phase, extracting
event encodings from the video footage and collecting the
event encodings into a training dictionary; in an online detec-
tion phase, receiving at least one input video sequence cap-
tured at the traffic location or a similar traffic location;
extracting an event encoding corresponding to the input video
sequence; reconstructing the event encoding with a low rank
sparsity prior model applied with respect to the training dic-
tionary; and computing a reconstruction error between actual
and reconstructed event encodings in order to determine if an
event thereof is anomalous by comparing the reconstruction
error with a threshold.

In another embodiment, a processor-readable medium
storing computer code representing instructions to cause a
process for detecting anomalies in transportation related
video footage can be implemented. Such computer code can
further include code to, for example, in an offline training
phase, receive video footage at a traffic location; in an offline
training phase, extract event encodings from the video foot-
age and collecting the event encodings into a training dictio-
nary; in an online detection phase, receive at least one input
video sequence captured at the traffic location or a similar
traffic location; extract an event encoding corresponding to
the input video sequence; reconstruct the event encoding with
a low rank sparsity prior model applied with respect to the
training dictionary; and compute a reconstruction error
between actual and reconstructed event encodings in order to
determine if an event thereof is anomalous by comparing the
reconstruction error with a threshold.

It will be appreciated that variations of the above-disclosed
and other features and functions, or alternatives thereof, may
be desirably combined into many other different systems or
applications. It will also be appreciated, that various presently
unforeseen or unanticipated alternatives, modifications,
variations or improvements therein may be subsequently
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made by those skilled in the art, which are also intended to be
encompassed by the following claims.

The invention claimed is:
1. A method for detecting anomalies in transportation
related video footage, said method comprising:

in an offline training phase, receiving video footage at a
traffic location;

in an offline training phase, extracting event encodings
from said video footage received at said traffic location
and collecting said event encodings into a training dic-
tionary;

in an online detection phase, receiving at least one input
video sequence captured at said traffic location or a
similar traffic location;

extracting an event encoding corresponding to said at least
one input video sequence;

reconstructing said event encoding with a low rank sparsity
prior model applied with respect to said training dictio-
nary; and

computing a reconstruction error between actual and
reconstructed event encodings in order to determine ifan
event thereof is anomalous by comparing said recon-
struction error with a threshold, wherein said computing
said reconstruction error between said actual and recon-
structed event encodings and determining if said event is
anomalous includes asserting that said event is normal if
the following test holds true:

Iy = 9ill,

<T-=Y
[ly:ll

wherein said y comprises a true event encoding, ¥, com-
prises a reconstructed event encoding, and T comprises a
predetermined threshold.

2. The method of claim 1 wherein said event encoding
comprises a trajectory of a moving object.

3. The method of claim 1 wherein said event encoding is
based on spatiotemporal volume.

4. The method of claim 3 wherein reconstructing said event
encoding further comprises computing with the following
expression ¥,=AS, wherein §, comprises a solution to a con-
strained convex optimization problem, and §, comprises a
reconstructed event encoding.

5. The method of 4 further comprising solving said con-
strained convex optimization problem via semi-definite pro-
gramming.

6. The method of claim 1 wherein reconstructing said event
encoding with said low rank sparsity prior model further
comprises solving a constrained convex optimization prob-
lem in order to simultaneously minimize a rank and maximize
sparsity of a reconstruction coefficient matrix subject to a
constraint on reconstruction error.

7. The method of claim 6 further comprising solving the
following problem:

minimize ||S||s+A|S|;

subject to || Y-4.5]|z<e

wherein S is a reconstruction coefficient matrix, Y is a matrix
ofinput event encodings y;, A is the training dictionary, ||S]| is
the nuclear norm of S, ||S||; is the L—1 norm of S, || || is the
Frobenius norm of a matrix, lis a regularization parameter,
and e is a predetermined threshold.

8. The method of claim 1 wherein said training dictionary
comprises a plurality of event encodings, wherein each event
encoding among said plurality of event encodings corre-
sponds to at least one multiple object.
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9. A system for detecting anomalies in transportation
related video footage, said system comprising:
a processor; and
a non-transitory computer-usable medium embodying
computer program code, said non-transitory computer-
usable medium capable of communicating with said
processor, said computer program code comprising
instructions executable by said processor and configured
for:
in an offline training phase, receiving video footage at a
traffic location;
in an offline training phase, extracting event encodings
from said video footage received at said traffic loca-
tion and collecting said event encodings into a train-
ing dictionary;
in an online detection phase, receiving at least one input
video sequence captured at said traffic location or a
similar traffic location;
extracting an event encoding corresponding to said at
least one input video sequence;
reconstructing said event encoding with a low rank spar-
sity prior model applied with respect to said training
dictionary; and
computing a reconstruction error between actual and
reconstructed event encodings in order to determine if
an event thereof is anomalous by comparing said
reconstruction error with a threshold, wherein said
computing said reconstruction error between said
actual and reconstructed event encodings and deter-
mining if said event is anomalous includes asserting
that said event is normal if the following test holds
true:

Iy = 3ill,

-y
1yl !

wherein said y comprises a true event encoding, ¥, com-
prises a reconstructed event encoding, and T comprises a
predetermined threshold.

10. The system of claim 9 wherein said event encoding
comprises a trajectory of a moving object.

11. The system of claim 9 wherein said event encoding is
based on spatiotemporal volume.

12. The system of claim 9 wherein said instructions for
reconstructing said event encoding with said low rank spar-
sity prior model, further comprises instructions configured
for solving a constrained convex optimization problem in
order to simultaneously minimize a rank and maximize spar-
sity of a reconstruction coefficient matrix subject to a con-
straint on reconstruction error.

13. The system of claim 12 wherein said instructions are
further configured for solving the following problem:

minimize [|S]l«+A|S|;

subject to || Y-43||z<e
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wherein S is a reconstruction coefficient matrix, Y is a matrix
ofinput event encodings y,, A is the training dictionary, ||S]|. is
the nuclear norm of S, ||S||; is the L—1 norm of S, || || is the
Frobenius norm of a matrix, lis a regularization parameter,
and e is a predetermined threshold.

14. The system of claim 12 wherein reconstructing said
event encoding further comprises computing with the follow-
ing expression ¥,=AS, wherein §, comprises a solution to a
constrained convex optimization problem, and §, comprises a
reconstructed event encoding.

15. The system of 14 wherein said instructions are further
configured for solving said constrained convex optimization
problem via semi-definite programming.

16. The system of claim 9 wherein said training dictionary
comprises a plurality of event encodings, wherein each event
encoding among said plurality of event encodings corre-
sponds to at least one multiple object.

17. A non-transitory processor-readable medium storing
computer code representing instructions to cause a process
for detecting anomalies in transportation related video foot-
age, said computer code further comprising code to:

in an offline training phase, receive video footage at a

traffic location;

in an offline training phase, extract event encodings from

said video footage received at said traffic location and
collecting said event encodings into a training dictio-
nary;

in an online detection phase, receive at least one input

video sequence captured at said traffic location or a
similar traffic location;

extract an event encoding corresponding to said at least one

input video sequence;

reconstruct said event encoding with a low rank sparsity

prior model applied with respect to said training dictio-
nary; and

compute a reconstruction error between actual and recon-

structed event encodings in order to determine if an
event thereof is anomalous by comparing said recon-
struction error with a threshold, wherein said computing
said reconstruction error between said actual and recon-
structed event encodings and determining if said event is
anomalous includes asserting that said event is normal if
the following test holds true:

llyi = 3:ll,

<T-=Y
[1ill, ‘

wherein said y comprises a true event encoding, ¥, com-
prises a reconstructed event encoding, and r comprises a
predetermined threshold.

18. The non-transitory processor-readable medium of

claim 17 wherein:

said event encoding comprises a trajectory of a moving
object;

said event encoding is based on spatiotemporal volume.
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